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1. Introduction. An important unsolved prcblem in the th

non-linear oscillations is to establish the boundedness or unbounded- .

ness of the general soluticn of (‘3—‘“\\—— I A ,,,/'// . R s
X = $i Pallwnens, Md }
x + 3(°°) = p(¢), (1.1)

vhere dots denote differentiation with respect to € . When -P(ft) ;
is perindic,; we may seek periodiec solutions. ' This ;earcl; is irter-

esting for its own sake, and of em&se leads us to special bounded

solutions. In three previocus papers (g,i,}) T have exhibited the

equation .
X+ 2xT = efl) (1.2)

as tractable: on the assumption that e(‘t) is even and periodic, 1t

was shown that the equation has an infinity of periodic solutions.

In this paper I show that

X + 2x' = p{L),- ¢ (13)

vrere ${{) 1s periodic, but is not necessarily even, also has an
infinity of periodic solutions. The main result is:

THEOREM 2. Suppose that p(T) 1s contimuously differentisble,
that it has least period 7 and that j:rf(t) dZ =0 .

Then for any positive integer 7m , (1.3) has an infinity of periodic
solutions with least period Amwr, .
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Before we can att- -} this we need a criterion for a
periodic solution of . and this is to say we need a
criterion for a topoi.;.:sl transformation T associated
with (1.3) to have a fixed point. (Cf. §2.) Our T has
the property of being area-preserving, a property which is
in many ways unwelcome since it precludes the use of the
sinpler methods appropriate to shr;nking transformations,
It does, however, allow of the following approach, Given
a topological transformation U/ of the _Plane onto itself,
we shall say a ('Jordan) curve C s .sté.r-like for /4
it

(i) the origin Q does not lie on C .
(ii) any ray (half-line) through O meets C once

at most, and ‘
(iii) any point P of C is transformed by /4 into
2 _point on the same ray OP.

It is then evident from a figure (and we give the simple formal

proof in §2) that we have

THEOREM 1. If U is an area-preserving transformation
e — S— "
and C is & simole closed curve which is star-like for U ,

then there are at least 2 fixed points of v on C.

The greater part of this paper will be devoted to showing
that, for any positive integer 7, there are sinmple closed
curves which are star-like for Tm. Once this is achieved

Theorem 2 follows quickly,

The work gives a further application of the’ technique
discussed in (4) for estimating certain partial derivatives,
We shall assume the results (and the notation) in §§1 to 7
of (4); if.the summary of (2) given in §z of (4) is accepted,
this paper is indepeﬁdent of (2). The work in (3) depends

essentially on the evenness of \e(t) and is irrelevant here,
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2. Topologiecal transformations of the plane, If ac(<; a,b; 0)
denotes the solution of (1.3) for which x(0)=a, %(0)=10,
we define T(a., b) by ’

T(a,bdb) = (x(er;Aa,b;O), x (2w a;B;O)),

Ve recall (see, fof exaxﬁple Levinson (1)) that T is
topological, that, since p({) has period 2w,

T™(a,b) = (x(2mw; a,b; 0), £ (2mw; a,b; 0)),
and that a‘c'(t;a,b,-o) has Zmw as a period if and only if
T™(a,b) = (a,b). '

In. this paper dashes will not be used as symbols of
differentiation but only as labels, in pafticular as labels
for transformed points and functions connected with them:

for example, we shall usually write (a’, b’) tor T (a,b).

Proof of Theorem 1; Ve note that a star-like simple closed
curve must have the origin in its interior.’ Tak{polar
coordinates with pole O and suppose C and UC have
equations 7+ = y(f) and + = y'(ﬂ) , each of y(4) ana

x’(e) being positive and continuous and having period Zw
Then the difference of the areas inside ( and U C is

0 = {-fo.”{y‘(e)—-';"(e)f dé.

Since the integrand is continuous and periodic there are
at least two values pf ¢ s incongruent ( mod ZF) 0
for whica y(e) = y'(9).

LZMA 1. T is area-preserving, |
. For any (@, b) ,vrite « (€)= x({; a, b} 0)
ana’ (a; b')= T (a,b) . Then the Wronskian, W{{) =ay,
of those solutions 3 (£) ana 3e ) of

]
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. 3.'4-» 64‘((’)} =0
for which 51(0) =1 , 5(0)=0 =d 3,(0)=0, 5,(0)=],
is always 1, and hence a(a', b')/ d(a,b) = W(2r)-: 1.

5., The arrangement of the calculations, 'From here onwards

ve write (a’, b') = T 7 (a, b), m being taken as a constant.
When we seek a curve which is star-like for T, we are

seeking points whose coordinates salisfy

S(a,b)= ab — a'b= a-b(a,b)-a(a,d)b={3.1)
We shall determine arcs, parametrized either as (a(b), b) or
(a, b(a)) , composed of points whose coordinates satisfy
(3.1). If ve appeal to the standard implicit function theorem
we must show. either d5/da or 35/ db aifferent from O, and in

order to do this vwe estimate, in §5, the elements of the

Jacobian matrix @(a', b’)/ 3(a,b) . Before this, in
§ 4, we estimate §(a., b)/Q(ho, ({,) . After these
preparations we can produce a star-like curve in §6 and prove

Theorem 2,

The estimation of g(a, b)/é (h,, ¢,) , although of the
type ve met in (4), 1s sufficiently different to need to be
given in some detail, Our other calculations are so light or so

similar to those in (:}.) that ve can abridge or suppress our

discussion of them,.

It will be clear that, if we chose, we could arrange to
obtain more detailed information about periodic solutions of
(1.3), especially if we varied the hypotheses on H({) and .
considered relations such as m € AR instead of taking m
as a constant, However, the technique of estimation has deen
amply illustrated in (4); we therefore aim to show the
applicatiﬁn of Theorem 1 as simply as possidle and do not strive

-

after such detail, '
4
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4. The estimation of @(a,b)/ 3(h., ) . Consider the
soiution x(¢; a,b;0)  of (1.3) in the case when a>0 'bs0,
Whether b"+ a’ 1s large or not, this solution may ‘also be
specified by giving ¢, , the value of { at vhich the last
paximum before £ =0 ocourred ( ¢, being 0 it b=0 ),

and h;

that if . b* + a® 1is large it is approximately equal to h: 3

» the value of that maximum, It will be anticipated

in our error terms we shall most often use suitable povers of

h, alone, but it will sometimes be necessary to estimate

in terms of products such as - ‘M. . =6 that we may later divide

211 = L= St

by b which could be small,

It will be useful to specialize some identities, (We give
reference numbers from (4) in square brackets.) First, by v

putting £o=0 in [2.5) ve find
h‘(.c)— B ot z/'T @) 2@t at
= o ﬁ ’.
and th;.s éives, if ve vrite @ = ’t,c( ’
) . ’, .
AT = Wq) = Beat+ 2 pie) () dt

S
=b+ta -f-Zh,,/; plE(R ¥} L. (4.1)
Rewriting this as

b = b [1- 0o e [P pteantad]

and remembering that b < 0 , we deduce that

-b = k: (1-2)! {f(a_l;h.,%)}t, (4.2)

where, as in [4 5],1

£(5; h,,c,,)—- 1+t4 %" +§ ‘ 5_/ p{t(h.k)}df

/
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Secondly, by writing ¥ = in the expression [4.4] for
t (ho §) we obtain '

1 .
~ ko =f_, (f—i)‘*{{(f;h,.%)} far. (4.3)

. : plw
Finally we observe that since /‘: p()dL =0 there
is no lods of generality in prescriding that 1:(0) =0 ,

This simplifies some details; it also gives minor improvements

in our estimations but these are inessential,

LEMVA 2, If b + a® is large, so is h, and

b* + a® = h, +0(1-2) = W'+ 0(I),
I-d= 0 (B'K")= 0(blk"),
SU-d*) = - bR * + (IR ). (4.4)

LEMMA 3. For large h, , in the case a0, bs0, p(0)=0,
(a-ba)h, +0(R")  -b+O(K)\"
i)i(cz.z b) _ - | .
2 (h,, 4) 2L(b+a’g)h + 0K 2a’+Q (KD
By [4.8] we know that 9L /dh, = Q(h;") and

hence, by substitution in [4.7), that
af/ak, = Q(n,°),
where we have reduced our error term from Q ( h;') to
a (h;:) by using P(0)= 0 . Differentiate (4.3) with

respect to hd ; we obtain, when we use (4.2),

—¢ = %_. 32 + 0fU-2) K}

end thi. _ives :
da[okh = (a- bqv,)h;t + O (|b] h:‘)




Ye need this form with b as a factor in the error term for

the immediately following work; a fortiori it gives thé result

enunciated,

If we now differentiate (4‘.1) vifh respect to h, we -

obtain
ab 3 2
2b o+ et B = - 2 [ primsat - u._[,,{zo.s) 2L 41

ok,

a further term on the right being suppressed since
p{£(hd)} = p(0) =0 . Each of the teims involving an

integral is Q{(”,‘d)h;‘}- = Q“bl h;’) » and
straightforward substitution gives ' .

b ob/ak, = 2b(b+a’g) k" + 0 (bIK).

It b 0 , our estimate of 9b/Jh, follows; it b =0 ,
we see from the meaning of the symbols that 2b/dh,=0 and
b + af(p, = 0, and our estimate is again valid,

Very similarly, by differentiating (4.3) and (4.1) with
respect to ¢, we establish our estimates for 3a/39. and
ab/a% o We need to recall that by [4.9)

3t/dq, = 1 + Q(h,") |
and to observe that this gives d¢/dh, = Q(h’).

5. ZThe estimation of Q(CL', b')/é(a., b) « Suppose

that (@, b) satisfies (3,1), Ve assume, as in §4, that
a20and by 0 but no longer include this hypothesis in

our snunciations; it implies, since (d—', b') lies

on the same ray through 0 as (@, b) » that a0 ,
b's0.1¢ b+ a*” s suitably large we expect that

the solution x (&; a,b; 0)  will have only positive maxime
and negative minima 1n 0= 'C € L. TOASTROSHAIPOOTER

We ghall show it is comutont with

l
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our previous notation to write ¢, and ¢,, for the values
of 4 at vhich the maxima preceding (or at) £ =0 and

L = Zmw oeccur. This notation implies that the solution
describes n cycles in ¢, € £ < @,, . Evidently

@(@’,b') p— g(a'" b') . Q(h»u» (,#-n) . ?(’5"’0)
2(a,b) ok, B 2(h,0)  2(a,b)

Once we have verified that ¢, is defined and have shown that

7o is not too large compared with h, we knov hov to estimate

the matrices on the right—hand side,

We shall continue to assume H(0)=0 but no longer

include this hypothesis in our enunciations.

LEMMA 4. If (a,b) satisfies (3.1) and A, 4s large,
then «, - is defined and there is & constant K such that
n < Hh, . Further, '

o' = afr+r 0K,
b o= b+ 0(r")
Gu —2mr = g, + Q(k,]),

[}
=S
Qe

l

We know that.when P 1is given there is an K= R(p)
with the property that if h.?R and v £ fh: f:hen
¢,, is defined, For definiteness take p= / , By an
eviden’ modification of [2.8),

@, — 9 = 2o (v=-Dk' + 0(*h,°),
the right-hand side of which exceeds £mw if h is large
and ¥ > F A, . This is to say that, for large &, ,
a ¢,, is defined such that ' '

by 7 2w + ¢ T 2mw,

N . 'A - - . -
Hence (5, 18 definable and we have at once- 27 <h,.

/
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ZmT > By = 2o (n=NB'+ 0 (nh)")

it follows that if ve write K =2m/w we have T < KA,
for large hv.

Ve recall that h, = h, + Q(n) = A+ O(R,).
write @' = (J+n)a’ mma b= (+9)b' ; then
B+ @/ = kb + O(ky.)
==k, + 0 (h) = &'+ a’+ O(h),
that is, (' +a’) + 1,14(1_4"2) a’= Q).
Whether 72 0 or —I < < <O , the terms on the left-hand
side have the same sign and we see that =% = O (k') ,

which gives the first and second estimates,
By use of (4.4) Qc see that
A=) = -b'h,. +QWIhE
= -bh* + O(K") = /(-a*) + (),
It is clear that (4.3) gives

1t - -5y .
0= K Gmgtat + 0K,
and that ¢, - Zmw may be written for ¢ , h,_ for
h, and & for o to give
Gon— 2 = j(/ ey tas - b f(/- e tas +0(h7)
¢, + Q(R;") + QR /0i- .(") — /(- ")lf
= ¢ + 0(n")

LEMMA 5.  Under the hypotheses of Lemma 4
@-bg)h + 0K -b+ (k)

Il

2(a’,b) _ . :
A, 4 2bra’g)i+ O(K) - 2a'+ 00
. /'; .

3
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SMA 6. If m < Kh, - then, for large h,,

T

a<hn.c,“)__( 1+ oK) YA

9k, ¢) Zanh, +e(k)  1+ao(R))

This is ot:izined at once by the methods of (3).

LENMA 7. FPor large h, o
 za' +0(h) b + 0(,°)

: ' ~'::£ PE ‘__Q ( ho: (f,) — _z‘ h—l
S 2(a, b)

~2(b+a'g) k" +0(K)  (a-bu)k +OE)
LIMMA 8. Under thg hur otheses of Lemma 4,

[+ 28 n a’bhfﬂz(’«;‘) ' &nb ";r‘*‘!(’\;*)
f!(q,', b’) — : : . . . R
4 (a, b) —4mnath +o ()  I-Lenabh +o(K')

R 95/0b = -®nbhk’ (2a*+8)+ 2 (1),

I

- .
K 6. A curve star-like for T . From (i) we know that when

7n and =~ are sujitably restricted there is a unique root of

o A Gen (Ao, 0) = mw, (6.1)
~ in particular, when m is fixed there is a unique root for
‘each large 7v . It will be clear that by trivial modifications

of the argument we can show that there is a unique root of-

L7 (hoy 0) = Zmmw. ' (6.2)
When we consider an even €({) these two unique roots will .
coincide, For a general p({) the equations (6.1) and (6.2)
have different roots, and it is (6.2) which is relevant; we

* .
shall write hn for the root of (6.2).

t
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Vrite £ for the point (h),0) of the (a,b)- plane..
Then (6.2) implies that all tt'xev stationary points of

x (4;h},0; 0) y OT at(t;ve_; 0) say, are positive
maxima or negative minima and thaéh\eré are 7 of each in
0 € L <Zwmw, Further, F, 1is the only point on the

positive a-axis with these properties.

Similﬁrly, .if we spéc:lf& a solution of (1.3) as _

- x(2;0, -h;; q,) ve can consider the function @, ., (h,, @)
end, again by trivial modifications of our previous arguments, ’
can show that - v '

Famss (h.l ’ 0) = &mm .
has a unique root, say h: o Write 7, for the point ('0,""::) .
Then /; and 7 ~F,  both 1ie on the negative half of the
b -axis and 7: is 'uniqi:ely characterized by the properties of
x (£, E; 0) . In exactly the same way we find points
(‘7:.:, g), (0, h,*‘) ,say , and % , whose transforms
by 7™ 1ie on the same half-axis as the initial points,
Finally we observe that if h: is the root of

Lo s (h,', 0) = Lo
x
the point (h,, 0) , F. say, has the properties of £, eand
we obtain 7: ‘-=-‘7: o

These remarks can be brought into a form suitable for
application if, as before, ve write m = m £+J and think

of £ as a Iarge integer, We have

LEMMA 9. Suppose m is fixed and that <4 is chosen:
if m=/, 4 istobe 0; if m >/, 4 is to be prime t
m and 0 < S’ <m, Suppose that the half-axes are

numbered (€ =0,/,2,3)  glockwise from_ the positive
a -axis, Then for each large integer X there is a point

!
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F(R) on the t¢~th half-axis such that

(1) TP

\ .
< and E lie on the same half-axis,

(i1) 2ll the stationary points of x (£; 7 ; 0)

are positive maxima or negative minima, and there are mi-f-d
of each in O € X <2mw, apq ‘ '
(114) B, are uniquely determined by (1) and (ii).

Further,

= (R+ofm)w + Q&K™).

Proof of Theorem 2, For large £, 35/0a % 0 at P and
so for a range of b <0 we have an arc parametrized (a(d), b)
whose points satisfy (3.1). At least on a sub-aro b+ a”

is large, with a’> B‘ , and the hypotheses of Lemma 4

(and hence of Lemma 8)are fulfilled, The integer » whose
existence is guaranteed by Lemma 4 will change continuously
and hence have the constant vaI'uo ' m‘i +.4 , VWhen vwe apply
Lemma 8 we see that on the sub-are d5/da # 0 and

da_ _ _ 35[36‘ - b+

db 88fea ~ za'+olk (a,b)’
which gives d (b'+a”)/db =o(l) . It follows that, for
large X, if the sub-arc does not already reach the ox;rvo

a*=1"b it can be uniguely continued, with the
parametrization (a(b), b)  until 1t does, and that I,‘-m.

remains large. Beyond this we can evidently continue with the |
parametrization (@, b(a)) until we arrive at a point on the l
negative b-axis with the characteristio properties of 71’ ’ ) i
that is at F . ' ‘

If a ray through () met this arc in two points we could,

by continuously turning the ray, find & ray which touched the
arc, contrary to the uniqueness of &(b) anda b(a) . To see
that the arc is star-like for 7  we need now only notice that

|
/ |
! .
/ ) ‘
A : ' =
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_Q does not lie on the arc since b‘+a,' remains large.

Similarly P can be joined to P, P tol and

B to B=F . vrite (=C(R) for the curve formed by

" these arcs, then C ana T”satisfy the hypotheses of
Theorem 1. Hence we have, for each large & s 8t least two
points fixed under T , say @Q,(#) ana  Q, (k) , ana
this mesns that x(£; Q,(#);0) ana x(£;Q,(%);0) ,
have Zmnr as a period, Finally this must be the least period
since @ach of these solutions has K +4 maxima in

0< XL < 2m=,

COROLLARY, For apy m 8nd every sufficiently large #,

there are at least two solutfons of (1.3) with least period

Zmw , desoribing = #+4 gycles jn this period and with
b+ at = R+afm)'o”+ OK).

I should 1like to thank Professor J. J. Mahony for reading

and comnenting on successive versions of 5.
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